
rb documentation
Release 1.0

Function Software Inc.

Apr 03, 2023

Contents

1 Installation 3

2 Configuration 5

3 Routing 7

4 API 9
4.1 Cluster . 9
4.2 Clients . 11
4.3 Promise . 13
4.4 Routers . 14
4.5 Testing . 14

Python Module Index 17

Index 19

i

ii

rb documentation, Release 1.0

Rb, the redis blaster, is a library that implements non-replicated sharding for redis. It implements a custom routing
system on top of python redis that allows you to automatically target different servers without having to manually
route requests to the individual nodes.

It does not implement all functionality of redis and does not attempt to do so. You can at any point get a client to a
specific host, but for the most part the assumption is that your operations are limited to basic key/value operations that
can be routed to different nodes automatically.

What you can do:

• automatically target hosts for single-key operations

• execute commands against all or a subset of nodes

• do all of that in parallel

Contents 1

rb documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

rb is available on PyPI and can be installed from there:

$ pip install rb

3

rb documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Configuration

Getting started with rb is super easy. If you have been using py-redis before you will feel right at home. The main
difference is that instead of connecting to a single host, you configure a cluster to connect to multiple:

from rb import Cluster

cluster = Cluster(hosts={
0: {'port': 6379},
1: {'port': 6380},
2: {'port': 6381},
3: {'port': 6382},
4: {'port': 6379},
5: {'port': 6380},
6: {'port': 6381},
7: {'port': 6382},

}, host_defaults={
'host': '127.0.0.1',

})

In this case we set up 8 nodes on four different server processes on the same host. The hosts parameter is a mapping
of hosts to connect to. The key of the dictionary is the host ID (an integer) and the value is a dictionary of parameters.
The host_defaults is a dictionary of optional defaults that is filled in for all hosts. This is useful if you want to share
some common defaults that repeat (in this case all hosts connect to localhost).

In the default configuration the PartitionRouter is used for routing.

5

rb documentation, Release 1.0

6 Chapter 2. Configuration

CHAPTER 3

Routing

Now that the cluster is constructed we can use Cluster.get_routing_client() to get a redis client that
automatically routes to the right redis nodes for each command:

client = cluster.get_routing_client()
results = {}
for key in keys_to_look_up:

results[key] = client.get(key)

The client works pretty much exactly like a standard pyredis StrictClient with the main difference that it can only
execute commands that involve exactly one key.

This basic operation however runs in series. What makes rb useful is that it can automatically build redis pipelines and
send out queries to many hosts in parallel. This however changes the usage slightly as now the value is not immediately
available:

results = {}
with cluster.map() as client:

for key in keys_to_look_up:
results[key] = client.get(key)

While it looks similar so far, instead of storing the actual values in the result dictionary, Promise objects are stored
instead. When the map context manager ends they are guaranteed however to have been executed and you can access
the Promise.value attribute to get the value:

for key, promise in results.iteritems():
print '%s: %s' % (key, promise.value)

If you want to send a command to all participating hosts (for instance to delete the database) you can use the
Cluster.all() method:

with cluster.all() as client:
client.flushdb()

If you do that, the promise value is a dictionary with the host IDs as keys and the results as value. As an example:

7

rb documentation, Release 1.0

with cluster.all() as client:
results = client.info()

for host_id, info in results.iteritems():
print 'host %s is running %s' % (host_id, info['os'])

To explicitly target some hosts you can use Cluster.fanout() which accepts a list of host IDs to send the
command to.

8 Chapter 3. Routing

CHAPTER 4

API

This is the entire reference of the public API. Note that this library extends the Python redis library so some of these
classes have more functionality for which you will need to consult the py-redis library.

4.1 Cluster

class rb.Cluster(hosts, host_defaults=None, pool_cls=None, pool_options=None, router_cls=None,
router_options=None)

The cluster is the core object behind rb. It holds the connection pools to the individual nodes and can be shared
for the duration of the application in a central location.

Basic example of a cluster over four redis instances with the default router:

cluster = Cluster(hosts={
0: {'port': 6379},
1: {'port': 6380},
2: {'port': 6381},
3: {'port': 6382},

}, host_defaults={
'host': '127.0.0.1',

})

hosts is a dictionary of hosts which maps the number host IDs to configuration parameters. The parameters
correspond to the signature of the add_host() function. The defaults for these parameters are pulled from
host_defaults. To override the pool class the pool_cls and pool_options parameters can be used. The same
applies to router_cls and router_options for the router. The pool options are useful for setting socket timeouts
and similar parameters.

add_host(host_id=None, host=’localhost’, port=6379, unix_socket_path=None, db=0, pass-
word=None, ssl=False, ssl_options=None)

Adds a new host to the cluster. This is only really useful for unittests as normally hosts are added through
the constructor and changes after the cluster has been used for the first time are unlikely to make sense.

9

rb documentation, Release 1.0

all(timeout=None, max_concurrency=64, auto_batch=True)
Fanout to all hosts. Works otherwise exactly like fanout().

Example:

with cluster.all() as client:
client.flushdb()

disconnect_pools()
Disconnects all connections from the internal pools.

execute_commands(mapping, *args, **kwargs)
Concurrently executes a sequence of commands on a Redis cluster that are associated with a routing key,
returning a new mapping where values are a list of results that correspond to the command in the same
position. For example:

>>> cluster.execute_commands({
... 'foo': [
... ('PING',),
... ('TIME',),
...],
... 'bar': [
... ('CLIENT', 'GETNAME'),
...],
... })
{'bar': [<Promise None>],
'foo': [<Promise True>, <Promise (1454446079, 418404)>]}

Commands that are instances of redis.client.Script will first be checked for their existence on
the target nodes then loaded on the targets before executing and can be interleaved with other commands:

>>> from redis.client import Script
>>> TestScript = Script(None, 'return {KEYS, ARGV}')
>>> cluster.execute_commands({
... 'foo': [
... (TestScript, ('key:1', 'key:2'), range(0, 3)),
...],
... 'bar': [
... (TestScript, ('key:3', 'key:4'), range(3, 6)),
...],
... })
{'bar': [<Promise [['key:3', 'key:4'], ['3', '4', '5']]>],
'foo': [<Promise [['key:1', 'key:2'], ['0', '1', '2']]>]}

Internally, FanoutClient is used for issuing commands.

fanout(hosts=None, timeout=None, max_concurrency=64, auto_batch=True)
Shortcut context manager for getting a routing client, beginning a fanout operation and joining over the
result.

In the context manager the client available is a FanoutClient. Example usage:

with cluster.fanout(hosts='all') as client:
client.flushdb()

get_local_client(host_id)
Returns a localized client for a specific host ID. This client works like a regular Python redis client and
returns results immediately.

10 Chapter 4. API

rb documentation, Release 1.0

get_local_client_for_key(key)
Similar to get_local_client_for_key() but returns the client based on what the router says the
key destination is.

get_pool_for_host(host_id)
Returns the connection pool for the given host.

This connection pool is used by the redis clients to make sure that it does not have to reconnect constantly.
If you want to use a custom redis client you can pass this in as connection pool manually.

get_router()
Returns the router for the cluster. If the cluster reconfigures the router will be recreated. Usually you do
not need to interface with the router yourself as the cluster’s routing client does that automatically.

This returns an instance of BaseRouter.

get_routing_client(auto_batch=True)
Returns a routing client. This client is able to automatically route the requests to the individual hosts. It’s
thread safe and can be used similar to the host local client but it will refused to execute commands that
cannot be directly routed to an individual node.

The default behavior for the routing client is to attempt to batch eligible commands into batch versions
thereof. For instance multiple GET commands routed to the same node can end up merged into an MGET
command. This behavior can be disabled by setting auto_batch to False. This can be useful for debugging
because MONITOR will more accurately reflect the commands issued in code.

See RoutingClient for more information.

map(timeout=None, max_concurrency=64, auto_batch=True)
Shortcut context manager for getting a routing client, beginning a map operation and joining over the
result. max_concurrency defines how many outstanding parallel queries can exist before an implicit join
takes place.

In the context manager the client available is a MappingClient. Example usage:

results = {}
with cluster.map() as client:

for key in keys_to_fetch:
results[key] = client.get(key)

for key, promise in results.iteritems():
print '%s => %s' % (key, promise.value)

remove_host(host_id)
Removes a host from the client. This only really useful for unittests.

4.2 Clients

class rb.RoutingClient(cluster, auto_batch=True)
A client that can route to individual targets.

For the parameters see Cluster.get_routing_client().

execute_command(*args, **options)
Execute a command and return a parsed response

fanout(hosts=None, timeout=None, max_concurrency=64, auto_batch=None)
Returns a context manager for a map operation that fans out to manually specified hosts instead of using
the routing system. This can for instance be used to empty the database on all hosts. The context manager
returns a FanoutClient. Example usage:

4.2. Clients 11

rb documentation, Release 1.0

with cluster.fanout(hosts=[0, 1, 2, 3]) as client:
results = client.info()

for host_id, info in results.value.iteritems():
print '%s -> %s' % (host_id, info['is'])

The promise returned accumulates all results in a dictionary keyed by the host_id.

The hosts parameter is a list of host_ids or alternatively the string 'all' to send the commands to all
hosts.

The fanout APi needs to be used with a lot of care as it can cause a lot of damage when keys are written to
hosts that do not expect them.

get_fanout_client(hosts, max_concurrency=64, auto_batch=None)
Returns a thread unsafe fanout client.

Returns an instance of FanoutClient.

get_mapping_client(max_concurrency=64, auto_batch=None)
Returns a thread unsafe mapping client. This client works similar to a redis pipeline and returns eventual
result objects. It needs to be joined on to work properly. Instead of using this directly you shold use the
map() context manager which automatically joins.

Returns an instance of MappingClient.

map(timeout=None, max_concurrency=64, auto_batch=None)
Returns a context manager for a map operation. This runs multiple queries in parallel and then joins in the
end to collect all results.

In the context manager the client available is a MappingClient. Example usage:

results = {}
with cluster.map() as client:

for key in keys_to_fetch:
results[key] = client.get(key)

for key, promise in results.iteritems():
print '%s => %s' % (key, promise.value)

class rb.MappingClient(connection_pool, max_concurrency=None, auto_batch=True)
The routing client uses the cluster’s router to target an individual node automatically based on the key of the
redis command executed.

For the parameters see Cluster.map().

cancel()
Cancels all outstanding requests.

execute_command(*args, **options)
Execute a command and return a parsed response

join(timeout=None)
Waits for all outstanding responses to come back or the timeout to be hit.

mget(keys, *args)
Returns a list of values ordered identically to keys

For more information see https://redis.io/commands/mget

mset(*args, **kwargs)
Sets key/values based on a mapping. Mapping is a dictionary of key/value pairs. Both keys and values
should be strings or types that can be cast to a string via str().

12 Chapter 4. API

https://redis.io/commands/mget

rb documentation, Release 1.0

For more information see https://redis.io/commands/mset

class rb.FanoutClient(hosts, connection_pool, max_concurrency=None, auto_batch=True)
This works similar to the MappingClient but instead of using the router to target hosts, it sends the com-
mands to all manually specified hosts.

The results are accumulated in a dictionary keyed by the host_id.

For the parameters see Cluster.fanout().

execute_command(*args, **options)
Execute a command and return a parsed response

target(hosts)
Temporarily retarget the client for one call. This is useful when having to deal with a subset of hosts for
one call.

target_key(key)
Temporarily retarget the client for one call to route specifically to the one host that the given key routes to.
In that case the result on the promise is just the one host’s value instead of a dictionary.

New in version 1.3.

4.3 Promise

class rb.Promise
A promise object that attempts to mirror the ES6 APIs for promise objects. Unlike ES6 promises this one
however also directly gives access to the underlying value and it has some slightly different static method names
as this promise can be resolved externally.

static all(iterable_or_dict)
A promise that resolves when all passed promises resolve. You can either pass a list or a dictionary of
promises.

done(on_success=None, on_failure=None)
Attaches some callbacks to the promise and returns the promise.

is_pending
True if the promise is still pending, False otherwise.

is_rejected
True if the promise was rejected, False otherwise.

is_resolved
True if the promise was resolved, False otherwise.

reason
the reason for this promise if it’s rejected.

reject(reason)
Rejects the promise with the given reason.

static rejected(reason)
Creates a promise object rejected with a certain value.

resolve(value)
Resolves the promise with the given value.

static resolved(value)
Creates a promise object resolved with a certain value.

4.3. Promise 13

https://redis.io/commands/mset

rb documentation, Release 1.0

then(success=None, failure=None)
A utility method to add success and/or failure callback to the promise which will also return another
promise in the process.

value
the value that this promise holds if it’s resolved.

4.4 Routers

class rb.BaseRouter(cluster)
Baseclass for all routers. If you want to implement a custom router this is what you subclass.

cluster
Reference back to the Cluster this router belongs to.

get_host_for_command(command, args)
Returns the host this command should be executed against.

get_host_for_key(key)
Perform routing and return host_id of the target.

Subclasses need to implement this.

get_key(command, args)
Returns the key a command operates on.

class rb.ConsistentHashingRouter(cluster)
Router that returns the host_id based on a consistent hashing algorithm. The consistent hashing algorithm only
works if a key argument is provided.

This router requires that the hosts are gapless which means that the IDs for N hosts range from 0 to N-1.

get_host_for_key(key)
Perform routing and return host_id of the target.

Subclasses need to implement this.

class rb.PartitionRouter(cluster)
A straightforward router that just individually routes commands to single nodes based on a simple crc32 %
node_count setup.

This router requires that the hosts are gapless which means that the IDs for N hosts range from 0 to N-1.

get_host_for_key(key)
Perform routing and return host_id of the target.

Subclasses need to implement this.

exception rb.UnroutableCommand
Raised if a command was issued that cannot be routed through the router to a single host.

4.5 Testing

class rb.testing.TestSetup(servers=4, databases_each=8, server_executable=’redis-server’)
The test setup is a convenient way to spawn multiple redis servers for testing and to shut them down automati-
cally. This can be used as a context manager to automatically terminate the clients.

rb.testing.make_test_cluster(*args, **kwargs)
Convenient shortcut for creating a test setup and then a cluster from it. This must be used as a context manager:

14 Chapter 4. API

rb documentation, Release 1.0

from rb.testing import make_test_cluster
with make_test_cluster() as cluster:

...

4.5. Testing 15

rb documentation, Release 1.0

16 Chapter 4. API

Python Module Index

r
rb, ??

17

rb documentation, Release 1.0

18 Python Module Index

Index

A
add_host() (rb.Cluster method), 9
all() (rb.Cluster method), 9
all() (rb.Promise static method), 13

B
BaseRouter (class in rb), 14

C
cancel() (rb.MappingClient method), 12
Cluster (class in rb), 9
cluster (rb.BaseRouter attribute), 14
ConsistentHashingRouter (class in rb), 14

D
disconnect_pools() (rb.Cluster method), 10
done() (rb.Promise method), 13

E
execute_command() (rb.FanoutClient method), 13
execute_command() (rb.MappingClient method), 12
execute_command() (rb.RoutingClient method), 11
execute_commands() (rb.Cluster method), 10

F
fanout() (rb.Cluster method), 10
fanout() (rb.RoutingClient method), 11
FanoutClient (class in rb), 13

G
get_fanout_client() (rb.RoutingClient method),

12
get_host_for_command() (rb.BaseRouter

method), 14
get_host_for_key() (rb.BaseRouter method), 14
get_host_for_key() (rb.ConsistentHashingRouter

method), 14
get_host_for_key() (rb.PartitionRouter method),

14

get_key() (rb.BaseRouter method), 14
get_local_client() (rb.Cluster method), 10
get_local_client_for_key() (rb.Cluster

method), 10
get_mapping_client() (rb.RoutingClient method),

12
get_pool_for_host() (rb.Cluster method), 11
get_router() (rb.Cluster method), 11
get_routing_client() (rb.Cluster method), 11

I
is_pending (rb.Promise attribute), 13
is_rejected (rb.Promise attribute), 13
is_resolved (rb.Promise attribute), 13

J
join() (rb.MappingClient method), 12

M
make_test_cluster() (in module rb.testing), 14
map() (rb.Cluster method), 11
map() (rb.RoutingClient method), 12
MappingClient (class in rb), 12
mget() (rb.MappingClient method), 12
mset() (rb.MappingClient method), 12

P
PartitionRouter (class in rb), 14
Promise (class in rb), 13

R
rb (module), 1
reason (rb.Promise attribute), 13
reject() (rb.Promise method), 13
rejected() (rb.Promise static method), 13
remove_host() (rb.Cluster method), 11
resolve() (rb.Promise method), 13
resolved() (rb.Promise static method), 13
RoutingClient (class in rb), 11

19

rb documentation, Release 1.0

T
target() (rb.FanoutClient method), 13
target_key() (rb.FanoutClient method), 13
TestSetup (class in rb.testing), 14
then() (rb.Promise method), 13

U
UnroutableCommand, 14

V
value (rb.Promise attribute), 14

20 Index

	Installation
	Configuration
	Routing
	API
	Cluster
	Clients
	Promise
	Routers
	Testing

	Python Module Index
	Index

