

rb: the redis blaster

Rb, the redis blaster, is a library that implements non-replicated
sharding for redis. It implements a custom routing system on top of
python redis that allows you to automatically target different servers
without having to manually route requests to the individual nodes.

It does not implement all functionality of redis and does not attempt to
do so. You can at any point get a client to a specific host, but for the
most part the assumption is that your operations are limited to basic
key/value operations that can be routed to different nodes automatically.

What you can do:

	automatically target hosts for single-key operations

	execute commands against all or a subset of nodes

	do all of that in parallel

Installation

rb is available on PyPI and can be installed from there:

$ pip install rb

Configuration

Getting started with rb is super easy. If you have been using py-redis
before you will feel right at home. The main difference is that instead
of connecting to a single host, you configure a cluster to connect to
multiple:

from rb import Cluster

cluster = Cluster(hosts={
 0: {'port': 6379},
 1: {'port': 6380},
 2: {'port': 6381},
 3: {'port': 6382},
 4: {'port': 6379},
 5: {'port': 6380},
 6: {'port': 6381},
 7: {'port': 6382},
}, host_defaults={
 'host': '127.0.0.1',
})

In this case we set up 8 nodes on four different server processes on the
same host. The hosts parameter is a mapping of hosts to connect to.
The key of the dictionary is the host ID (an integer) and the value is
a dictionary of parameters. The host_defaults is a dictionary of
optional defaults that is filled in for all hosts. This is useful if you
want to share some common defaults that repeat (in this case all hosts
connect to localhost).

In the default configuration the PartitionRouter is used for
routing.

Routing

Now that the cluster is constructed we can use
Cluster.get_routing_client() to get a redis client that
automatically routes to the right redis nodes for each command:

client = cluster.get_routing_client()
results = {}
for key in keys_to_look_up:
 results[key] = client.get(key)

The client works pretty much exactly like a standard pyredis
StrictClient with the main difference that it can only execute commands
that involve exactly one key.

This basic operation however runs in series. What makes rb useful is that
it can automatically build redis pipelines and send out queries to many
hosts in parallel. This however changes the usage slightly as now the
value is not immediately available:

results = {}
with cluster.map() as client:
 for key in keys_to_look_up:
 results[key] = client.get(key)

While it looks similar so far, instead of storing the actual values in the
result dictionary, Promise objects are stored instead. When the
map context manager ends they are guaranteed however to have been executed
and you can access the Promise.value attribute to get the value:

for key, promise in results.iteritems():
 print '%s: %s' % (key, promise.value)

If you want to send a command to all participating hosts (for instance to
delete the database) you can use the Cluster.all() method:

with cluster.all() as client:
 client.flushdb()

If you do that, the promise value is a dictionary with the host IDs as
keys and the results as value. As an example:

with cluster.all() as client:
 results = client.info()
for host_id, info in results.iteritems():
 print 'host %s is running %s' % (host_id, info['os'])

To explicitly target some hosts you can use Cluster.fanout() which
accepts a list of host IDs to send the command to.

API

This is the entire reference of the public API. Note that this library
extends the Python redis library so some of these classes have more
functionality for which you will need to consult the py-redis library.

Cluster

	
class rb.Cluster(hosts, host_defaults=None, pool_cls=None, pool_options=None, router_cls=None, router_options=None)

	The cluster is the core object behind rb. It holds the connection
pools to the individual nodes and can be shared for the duration of
the application in a central location.

Basic example of a cluster over four redis instances with the default
router:

cluster = Cluster(hosts={
 0: {'port': 6379},
 1: {'port': 6380},
 2: {'port': 6381},
 3: {'port': 6382},
}, host_defaults={
 'host': '127.0.0.1',
})

hosts is a dictionary of hosts which maps the number host IDs to
configuration parameters. The parameters correspond to the signature
of the add_host() function. The defaults for these parameters
are pulled from host_defaults. To override the pool class the
pool_cls and pool_options parameters can be used. The same
applies to router_cls and router_options for the router. The pool
options are useful for setting socket timeouts and similar parameters.

	
add_host(host_id=None, host='localhost', port=6379, unix_socket_path=None, db=0, password=None, ssl=False, ssl_options=None)

	Adds a new host to the cluster. This is only really useful for
unittests as normally hosts are added through the constructor and
changes after the cluster has been used for the first time are
unlikely to make sense.

	
all(timeout=None, max_concurrency=64, auto_batch=True)

	Fanout to all hosts. Works otherwise exactly like fanout().

Example:

with cluster.all() as client:
 client.flushdb()

	
disconnect_pools()

	Disconnects all connections from the internal pools.

	
execute_commands(mapping, *args, **kwargs)

	Concurrently executes a sequence of commands on a Redis cluster that
are associated with a routing key, returning a new mapping where
values are a list of results that correspond to the command in the same
position. For example:

>>> cluster.execute_commands({
... 'foo': [
... ('PING',),
... ('TIME',),
...],
... 'bar': [
... ('CLIENT', 'GETNAME'),
...],
... })
{'bar': [<Promise None>],
 'foo': [<Promise True>, <Promise (1454446079, 418404)>]}

Commands that are instances of redis.client.Script will first
be checked for their existence on the target nodes then loaded on the
targets before executing and can be interleaved with other commands:

>>> from redis.client import Script
>>> TestScript = Script(None, 'return {KEYS, ARGV}')
>>> cluster.execute_commands({
... 'foo': [
... (TestScript, ('key:1', 'key:2'), range(0, 3)),
...],
... 'bar': [
... (TestScript, ('key:3', 'key:4'), range(3, 6)),
...],
... })
{'bar': [<Promise [['key:3', 'key:4'], ['3', '4', '5']]>],
 'foo': [<Promise [['key:1', 'key:2'], ['0', '1', '2']]>]}

Internally, FanoutClient is used for issuing commands.

	
fanout(hosts=None, timeout=None, max_concurrency=64, auto_batch=True)

	Shortcut context manager for getting a routing client, beginning
a fanout operation and joining over the result.

In the context manager the client available is a
FanoutClient. Example usage:

with cluster.fanout(hosts='all') as client:
 client.flushdb()

	
get_local_client(host_id)

	Returns a localized client for a specific host ID. This client
works like a regular Python redis client and returns results
immediately.

	
get_local_client_for_key(key)

	Similar to get_local_client_for_key() but returns the
client based on what the router says the key destination is.

	
get_pool_for_host(host_id)

	Returns the connection pool for the given host.

This connection pool is used by the redis clients to make sure
that it does not have to reconnect constantly. If you want to use
a custom redis client you can pass this in as connection pool
manually.

	
get_router()

	Returns the router for the cluster. If the cluster reconfigures
the router will be recreated. Usually you do not need to interface
with the router yourself as the cluster’s routing client does that
automatically.

This returns an instance of BaseRouter.

	
get_routing_client(auto_batch=True)

	Returns a routing client. This client is able to automatically
route the requests to the individual hosts. It’s thread safe and
can be used similar to the host local client but it will refused
to execute commands that cannot be directly routed to an
individual node.

The default behavior for the routing client is to attempt to batch
eligible commands into batch versions thereof. For instance multiple
GET commands routed to the same node can end up merged into an
MGET command. This behavior can be disabled by setting auto_batch
to False. This can be useful for debugging because MONITOR will
more accurately reflect the commands issued in code.

See RoutingClient for more information.

	
map(timeout=None, max_concurrency=64, auto_batch=True)

	Shortcut context manager for getting a routing client, beginning
a map operation and joining over the result. max_concurrency
defines how many outstanding parallel queries can exist before an
implicit join takes place.

In the context manager the client available is a
MappingClient. Example usage:

results = {}
with cluster.map() as client:
 for key in keys_to_fetch:
 results[key] = client.get(key)
for key, promise in results.iteritems():
 print '%s => %s' % (key, promise.value)

	
remove_host(host_id)

	Removes a host from the client. This only really useful for
unittests.

Clients

	
class rb.RoutingClient(cluster, auto_batch=True)

	A client that can route to individual targets.

For the parameters see Cluster.get_routing_client().

	
execute_command(*args, **options)

	Execute a command and return a parsed response

	
fanout(hosts=None, timeout=None, max_concurrency=64, auto_batch=None)

	Returns a context manager for a map operation that fans out to
manually specified hosts instead of using the routing system. This
can for instance be used to empty the database on all hosts. The
context manager returns a FanoutClient. Example usage:

with cluster.fanout(hosts=[0, 1, 2, 3]) as client:
 results = client.info()
for host_id, info in results.value.iteritems():
 print '%s -> %s' % (host_id, info['is'])

The promise returned accumulates all results in a dictionary keyed
by the host_id.

The hosts parameter is a list of host_ids or alternatively the
string 'all' to send the commands to all hosts.

The fanout APi needs to be used with a lot of care as it can cause
a lot of damage when keys are written to hosts that do not expect
them.

	
get_fanout_client(hosts, max_concurrency=64, auto_batch=None)

	Returns a thread unsafe fanout client.

Returns an instance of FanoutClient.

	
get_mapping_client(max_concurrency=64, auto_batch=None)

	Returns a thread unsafe mapping client. This client works
similar to a redis pipeline and returns eventual result objects.
It needs to be joined on to work properly. Instead of using this
directly you shold use the map() context manager which
automatically joins.

Returns an instance of MappingClient.

	
map(timeout=None, max_concurrency=64, auto_batch=None)

	Returns a context manager for a map operation. This runs
multiple queries in parallel and then joins in the end to collect
all results.

In the context manager the client available is a
MappingClient. Example usage:

results = {}
with cluster.map() as client:
 for key in keys_to_fetch:
 results[key] = client.get(key)
for key, promise in results.iteritems():
 print '%s => %s' % (key, promise.value)

	
class rb.MappingClient(connection_pool, max_concurrency=None, auto_batch=True)

	The routing client uses the cluster’s router to target an individual
node automatically based on the key of the redis command executed.

For the parameters see Cluster.map().

	
cancel()

	Cancels all outstanding requests.

	
execute_command(*args, **options)

	Execute a command and return a parsed response

	
join(timeout=None)

	Waits for all outstanding responses to come back or the timeout
to be hit.

	
mget(keys, *args)

	Returns a list of values ordered identically to keys

For more information see https://redis.io/commands/mget

	
mset(*args, **kwargs)

	Sets key/values based on a mapping. Mapping is a dictionary of
key/value pairs. Both keys and values should be strings or types that
can be cast to a string via str().

For more information see https://redis.io/commands/mset

	
class rb.FanoutClient(hosts, connection_pool, max_concurrency=None, auto_batch=True)

	This works similar to the MappingClient but instead of
using the router to target hosts, it sends the commands to all manually
specified hosts.

The results are accumulated in a dictionary keyed by the host_id.

For the parameters see Cluster.fanout().

	
execute_command(*args, **options)

	Execute a command and return a parsed response

	
target(hosts)

	Temporarily retarget the client for one call. This is useful
when having to deal with a subset of hosts for one call.

	
target_key(key)

	Temporarily retarget the client for one call to route
specifically to the one host that the given key routes to. In
that case the result on the promise is just the one host’s value
instead of a dictionary.

New in version 1.3.

Promise

	
class rb.Promise

	A promise object that attempts to mirror the ES6 APIs for promise
objects. Unlike ES6 promises this one however also directly gives
access to the underlying value and it has some slightly different
static method names as this promise can be resolved externally.

	
static all(iterable_or_dict)

	A promise that resolves when all passed promises resolve. You can
either pass a list or a dictionary of promises.

	
done(on_success=None, on_failure=None)

	Attaches some callbacks to the promise and returns the promise.

	
is_pending

	True if the promise is still pending, False otherwise.

	
is_rejected

	True if the promise was rejected, False otherwise.

	
is_resolved

	True if the promise was resolved, False otherwise.

	
reason

	the reason for this promise if it’s rejected.

	
reject(reason)

	Rejects the promise with the given reason.

	
static rejected(reason)

	Creates a promise object rejected with a certain value.

	
resolve(value)

	Resolves the promise with the given value.

	
static resolved(value)

	Creates a promise object resolved with a certain value.

	
then(success=None, failure=None)

	A utility method to add success and/or failure callback to the
promise which will also return another promise in the process.

	
value

	the value that this promise holds if it’s resolved.

Routers

	
class rb.BaseRouter(cluster)

	Baseclass for all routers. If you want to implement a custom router
this is what you subclass.

	
cluster

	Reference back to the Cluster this router belongs to.

	
get_host_for_command(command, args)

	Returns the host this command should be executed against.

	
get_host_for_key(key)

	Perform routing and return host_id of the target.

Subclasses need to implement this.

	
get_key(command, args)

	Returns the key a command operates on.

	
class rb.ConsistentHashingRouter(cluster)

	Router that returns the host_id based on a consistent hashing
algorithm. The consistent hashing algorithm only works if a key
argument is provided.

This router requires that the hosts are gapless which means that
the IDs for N hosts range from 0 to N-1.

	
get_host_for_key(key)

	Perform routing and return host_id of the target.

Subclasses need to implement this.

	
class rb.PartitionRouter(cluster)

	A straightforward router that just individually routes commands to
single nodes based on a simple crc32 % node_count setup.

This router requires that the hosts are gapless which means that
the IDs for N hosts range from 0 to N-1.

	
get_host_for_key(key)

	Perform routing and return host_id of the target.

Subclasses need to implement this.

	
exception rb.UnroutableCommand

	Raised if a command was issued that cannot be routed through the
router to a single host.

Testing

	
class rb.testing.TestSetup(servers=4, databases_each=8, server_executable='redis-server')

	The test setup is a convenient way to spawn multiple redis servers
for testing and to shut them down automatically. This can be used as
a context manager to automatically terminate the clients.

	
rb.testing.make_test_cluster(*args, **kwargs)

	Convenient shortcut for creating a test setup and then a cluster
from it. This must be used as a context manager:

from rb.testing import make_test_cluster
with make_test_cluster() as cluster:
 ...

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 rb	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | P
 | R
 | T
 | U
 | V

A

 	
 	add_host() (rb.Cluster method)

 	
 	all() (rb.Cluster method)

 	(rb.Promise static method)

B

 	
 	BaseRouter (class in rb)

C

 	
 	cancel() (rb.MappingClient method)

 	Cluster (class in rb)

 	
 	cluster (rb.BaseRouter attribute)

 	ConsistentHashingRouter (class in rb)

D

 	
 	disconnect_pools() (rb.Cluster method)

 	
 	done() (rb.Promise method)

E

 	
 	execute_command() (rb.FanoutClient method)

 	(rb.MappingClient method)

 	(rb.RoutingClient method)

 	
 	execute_commands() (rb.Cluster method)

F

 	
 	fanout() (rb.Cluster method)

 	(rb.RoutingClient method)

 	
 	FanoutClient (class in rb)

G

 	
 	get_fanout_client() (rb.RoutingClient method)

 	get_host_for_command() (rb.BaseRouter method)

 	get_host_for_key() (rb.BaseRouter method)

 	(rb.ConsistentHashingRouter method)

 	(rb.PartitionRouter method)

 	get_key() (rb.BaseRouter method)

 	
 	get_local_client() (rb.Cluster method)

 	get_local_client_for_key() (rb.Cluster method)

 	get_mapping_client() (rb.RoutingClient method)

 	get_pool_for_host() (rb.Cluster method)

 	get_router() (rb.Cluster method)

 	get_routing_client() (rb.Cluster method)

I

 	
 	is_pending (rb.Promise attribute)

 	
 	is_rejected (rb.Promise attribute)

 	is_resolved (rb.Promise attribute)

J

 	
 	join() (rb.MappingClient method)

M

 	
 	make_test_cluster() (in module rb.testing)

 	map() (rb.Cluster method)

 	(rb.RoutingClient method)

 	
 	MappingClient (class in rb)

 	mget() (rb.MappingClient method)

 	mset() (rb.MappingClient method)

P

 	
 	PartitionRouter (class in rb)

 	
 	Promise (class in rb)

R

 	
 	rb (module)

 	reason (rb.Promise attribute)

 	reject() (rb.Promise method)

 	rejected() (rb.Promise static method)

 	
 	remove_host() (rb.Cluster method)

 	resolve() (rb.Promise method)

 	resolved() (rb.Promise static method)

 	RoutingClient (class in rb)

T

 	
 	target() (rb.FanoutClient method)

 	target_key() (rb.FanoutClient method)

 	
 	TestSetup (class in rb.testing)

 	then() (rb.Promise method)

U

 	
 	UnroutableCommand

V

 	
 	value (rb.Promise attribute)

 nav.xhtml

 Table of Contents

 		
 rb: the redis blaster

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/rb.png
he
rb redis
blaster

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

